
DEMon: Decentralized Monitoring for Highly
Volatile Edge Environments

Shashikant Ilager, Jakob Fahringer, Samuel Carlos de Lima Dias, Ivona Brandic
High Performance Computing Systems Research Group

Vienna University of Technology, Austria

Abstract—Monitoring systems play an essential role in effi-
ciently managing resources and application workloads by col-
lecting, storing, and providing requisite information about the
state of the resources. However, traditional monitoring systems
that collect and store the data in centralized remote servers are
infeasible for Edge environments. The centralized architecture
increases the communication latency for information storage
and retrieval and creates a failure bottleneck. In addition, the
Edge resources are arbitrarily (de)provisioned, which creates
further challenges for providing quick and trustworthy data.
Thus, it is crucial to design and build a monitoring system
that is fast, reliable, and trustworthy for such volatile Edge
computing systems. Therefore, we propose a Decentralised Edge
Monitoring (DEMon) framework, a decentralized, self-adaptive
monitoring for highly volatile Edge environments. DEMon, at
the core, leverages the stochastic Gossip communication protocol
and develops techniques for efficient information dissemination,
communication, and retrieval, avoiding a single point of failure
and ensuring fast and trustworthy data access. We implement it
as a lightweight and portable container-based monitoring system
and evaluate it through empirical experiments. The results show
that DEMon efficiently decimates and retrieves the monitoring
information, addressing the abovementioned challenges.

Index Terms—Edge computing, Monitoring Systems, IoT and
Decentralized Storage and Retrieval, Trustworthy Systems.

I. INTRODUCTION

Edge computing offers computing resources for the latency-

sensitive Internet of Things (IoT) workloads enabling data pro-

cessing at the network edge. However, unlike Cloud comput-

ing, which provides reliable and robust computing resources

from centralized data centers, Edge computing offers services

from a highly distributed environment with heterogeneous and

resource-constrained compute and network resources [1], [2].

Therefore, deploying application services reliably on Edge

needs efficient infrastructure monitoring systems, allowing

applications and service providers to make crucial decisions

based on the monitoring data.

Monitoring services allow observation of the overall status

of the infrastructure and play a crucial role in resource

management tasks such as resource provisioning, scheduling,

load balancing, and failure detection. Traditionally, Cloud

computing services are offered through data centers directly

managed by single service providers, and data center resources

are monitored through sophisticated Data Center Infrastructure

Management (DCIM) tools centrally deployed on robust and

reliable servers. Many of the Cloud service providers build

their in-house DCIM platforms (e.g., Google’s Borgmon),

while private Clouds adopt open-source monitoring tools such

as Zabbix [3] and Prometheus [4]. These systems query the

state of the other servers and resources at predefined time

intervals and store the monitored data in time-series databases,

requiring centralized and reliable computational and storage

resources, which are infeasible for the Edge due to its unique

requirements and challenges.

First, Edge computing infrastructure is highly heteroge-

neous, consisting of IoT devices, embedded systems, domain-

specific accelerators, and inexpensive off-the-shelf commodity

servers and micro-data centers. Such hyper-heterogeneity with

failure-prone devices introduces a massive complexity to the

design and implementation of monitoring systems. Secondly,

unlike a Cloud, which has a high-speed and reliable network,

Edge infrastructures are built upon limited bandwidth and

unreliable networks, including wireless and cellular networks.

Thus, communication failures should be considered a norm

rather than an exception. Thirdly, Edge infrastructures are

volatile- where resources are pooled by multiple services

providers across various network domains [2], and machines

are dynamically provisioned or de-provisioned (join and leave

the resource pool) based on network connectivity and power

budget, among other parameters. Thus, creating challenges for

retrieving trustable monitoring data in multi-party resource

environments [5]. Some recent works have explored solutions

for Edge monitoring [6]–[8] and multi-tier Fog computing [9],

[10]. However, they consider either some form of a centralized

controller or remote storage mechanisms.

In this paper, addressing the challenges associated with

Edge monitoring, we propose Decentralized Edge Monitor-

ing (DEMon), an efficient, decentralized, self-adaptive, and

trustable monitoring system for a highly volatile Edge environ-

ment. We imagine the proposed system as a distributed infor-

mation management system with efficient information spread-

ing, storage, and data retrieval. We use a stochastic group

communication protocol for information dissemination in a

volatile Edge environment [11]–[13]. In particular, a Gossip-

based information dissemination algorithm adjusting to the

requirements of Edge environments. Our proposed approach

effectively decimates information across the network without

introducing massive concentrated network traffic and achieves

uniform network load distribution. In addition, we propose the

Leaderless Quorum Consensus (LHC) protocol for information

retrieval, which can quickly aggregate the information of a

specific node, ensuring fast and trustworthy retrieval of the

data. The DEMon’s architecture is decentralized, i.e., it does

145

2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)

978-1-6654-6087-3/22/$31.00 ©2022 IEEE
DOI 10.1109/UCC56403.2022.00026

20
22

 IE
EE

/A
C

M
 1

5t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

til
ity

 a
nd

 C
lo

ud
 C

om
pu

tin
g

(U
C

C
) |

 9
78

-1
-6

65
4-

60
87

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
U

C
C

56
40

3.
20

22
.0

00
26

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:58:15 UTC from IEEE Xplore. Restrictions apply.

not depend on a centralized controller or servers for infor-

mation storage and retrieval; instead, it uniformly distributes

the data across the network autonomously. Furthermore, it is

self-adaptive, i.e., no external configurations or measures are

enforced during resource or network failures and infrastructure

changes. These features of DEMon provide an efficient mech-

anism for decentralized information dissemination and storage

in Edge. Moreover, unlike centralized monitoring services,

application services can access the monitored data quickly

without introducing increased latency.

II. BACKGROUND AND SYSTEM ARCHITECTURAL MODEL

A. Gossip Protocol

The epistemic algorithms are inherently stochastic [12], [13]

and provide a robust framework for building communication

protocols and information systems in networked systems [11],

[14], [15]. Gossip protocol is a popular epistemic-based algo-

rithm that provides efficient means for group communication

without broadcasting. It is highly scalable and resilient and

avoids a single point of failure [12]. In this protocol, each

node periodically selects a few other random nodes, exchanges

the state information, and waits to receive data from other

nodes. The rate of message exchange (gossip_rate) and

the number of random nodes chosen (gossip_count) are

configurable. Once a node receives state information, it up-

dates its state if that particular data is new or not present.

Otherwise, it drops the message and continues to wait for new

messages. The system is considered converged if all the nodes

know about every other node. However, in our case, since

the monitored data also changes continuously in all nodes,

gossiping should continue indefinitely. It has been shown that

the Gossip protocol works well in designing the theoretical dis-

tributed systems [12]. However, its application in large-scale

real-world systems is less explored [16]. In addition, if the

hyper-parameters of the protocol (e.g., gossip_rate and

gossip_count) are misconfigured, it might exponentially

increase the network and storage load and may even perform

worse than broadcast-based communication [17]. Therefore,

it becomes imperative to carefully study the feasibility and

analyze protocol in resource-constrained Edge. This paper

investigates the effect of various hyper-parameters on metrics

such as network load, query latency, and information quality.

B. Architecture of DEMon

Figure 1 shows a high-level architectural view of the DE-

Mon with its main components where each Edge node is

a physical or a virtual machine. The DEMon’s architecture

is categorized into two parts, i.e., information dissemination
and information retrieval. In the first component, the sender

process accesses local monitoring data from standard OS-

specific interfaces. It then periodically sends its current system

state, including its own state (monitoring metrics) and the state

of other nodes’ that it currently has. Similarly, the receiver

process asynchronously waits for the new information sent

from other nodes. The communication between sender and

receiver is inter-node communication over the network, and

Communication Protocol

Query AgentSender

Text

Reciever

OS Daemon

Gossip

Trurstworthy Data
Access

Data
Store

Internode communication
Interprocess communication

Edge

DEMon

Query

Fig. 1: DEMon Architecture

each node has both sender and receiver processes. The second

component provides monitoring information for user requests.

The query agent scans the local data store, and the trustwor-

thy data verification mechanism is employed to provide the

requested information. The same instance of DEMon runs

in all the Edge nodes, and no node has any different role

in the system. In the next section, we describe the essential

components of DEMon in detail.

III. DEMON: DECENTRALISED EDGE MONITORING

A. Data Format

The primary data in our monitoring systems is the resource

usage levels of Edge nodes. Periodically, the monitoring sys-

tem collects essential utilization metrics such as CPU, mem-

ory, network, and storage capacity, with different granularity

[3]. In addition, the DEMon collects required metadata (host-

name), heartbeat (timestamp), and a time counter (integer).

We also maintain a message digest of the whole monitored

data, which is later used to establish the trustworthiness of

monitoring data during the information retrieval. Each node’s

data is stored using a JSON object format, where key is

the node’s IP address, and value is collected metrics and

associated metadata. A new node’s information is easily added

by creating a new key with its corresponding IP. A sample

JSON object of a node is shown below.

{"nodeIP":
{"appSate":{"cpu":"", "memory":"",

"network":"", "storage":""},
"counter":"",
"hbState":""
}

"digest":""
}

B. Information dissemination

The Algorithm 1 describes the pseudo-code for our in-

formation dissemination logic. The Algorithm 1 has two

146

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:58:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Information dissemination using Gossip

1 X ← NULL
2 Communicator Thread
3 for every t seconds do
4 X ← updateOwnInfo(self.getCurrentState())
5 nodes ← selectRandomTargets()
6 for each node in nodes do
7 send X.metaData to node
8 if response from node then
9 updates, requests ← parse(response)

10 for each update in updates do
11 X.update ← updateInfo(update)

12 end
13 send getKnownInfo(X.requests) to node
14 end
15 end
16 Listener Thread
17 while True do
18 receive Y.metadata from sender

19 X ← getKnownInfo()
/* Compare the time counters*/

20 if X.metadata �= Y.metadata then
21 updates, requests ← parse

(X.metdata, Y.metdata)
22 send updates, requests to sender
23 receive Y from sender
24 update X.Y
25 end

main execution threads, sender, and listener. For each

predefined time interval t (also known as gossip_rate),

a sender thread reads its status from the local OS interface

and updates its status in the object store (line 4). Then, it

randomly chooses the gossip_count number of nodes from

its membership list and initially only sends metadata (lines

5-7), which includes all the known node ids and their time

counters. This logic avoids excessive bandwidth consumption

by avoiding duplicate data transmission repetitively since the

receiver only intends to receive missing or fresh data. The

sender would then respond with the requested information and

update its local data store if any new updates are sent from

the receiver (lines 9-13).

Similarly, in the receiver thread, for any incoming mes-

sage, it checks if its data store needs to be updated based

on the metadata it has received, i.e., key (node ids) and

time counter values (lines 18-20). Based on the comparison,

the receiver sends back a response message. This response

message includes two parts: first, requesting the new piece of

missing information (requests). Second, if a receiver has new

data in contrast to the sender, it directly sends this updated

information to the sender (updates). This dual role of the

receiver enables quick information sharing between a sender

and a receiver where a sender is not only disseminating new

information across the network but also simultaneously getting

Algorithm 2: Trustworthy data retrieval based on

Leaderless Quorum Consensus (LQC) Protocol

1 queryNodes ← selectQueryNodes()
2 responses ← queryMetaData(queryNodes)
3 R ← select quorum number responses
/*provides a notion of consistency*/

4 if compare (R.timestamp) is true then
/*ensures data trustworthiness*/

5 if compare (R.degset) is true then
6 queryData()
7 else
8 go to selectQueryNodes()
9 end

10 else
11 go to selectQueryNodes()
12 end

updated with the new information from the receiver. The

instance of the same algorithm runs in all the Edge nodes.

The stochastic selection of nodes in Algorithm 1 ensures

the uniform distribution of messages in the network, and it

does not spike a specific network link with high bandwidth

usage. Moreover, the information spreads exponentially across

the nodes and evenly distributes the network load [17]. Any

permanent or transient failures do not affect the monitoring

infrastructure as new nodes can send and receive the monitored

data from the network and quickly know about all other nodes.

C. Storage

We store the data in an in-memory key-value object-store

where each node maintains a hashmap with all nodes IPs as

its key, and its corresponding monitored data as value, based

on the format described in Section III-A. For an incoming

gossip message, we check if it has any new data for a node,

comparing the current time counter to the received message

and update its local data store. Thus, the hashmap size remains

constant at any time unless new nodes are added to the system,

allowing greater scalability for our monitoring system. In

addition, the key-value object store provides interoperability

across different programming interfaces and flexibility to build

various aggregate and query functions. One can also check-

point the data at regular intervals for persistent data storage;

however, we do not checkpoint the data.

D. Information Retrieval

Since the data is replicated across the participant nodes, it

is crucial to ensure that retrieved data is recent, consistent,

trustworthy, and not altered by malicious nodes. Generally,

consistency is ensured in distributed information systems by

using consensus protocols like Paxos [18]. However, such

protocol requires leader nodes and is computationally expen-

sive, making them infeasible in our case. Consequently, we

propose an efficient group-based Leaderless Quorum Con-
sensus (LQC) protocol as shown in Algorithm 2, where we

eliminate centralized leader node architecture, which creates

147

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:58:15 UTC from IEEE Xplore. Restrictions apply.

failure bottleneck and increases latency. Here, we parallelly

query a subset of nodes for required information, and the

responses consist of the queried data along with the associated

message digests (lines 1-3), and we wait until we receive

the minimum number of responses, i.e., quorum. The data is

considered consistent and trustworthy when the time counters

and the corresponding digests (ensuring data integrity) are

matched from the responses (lines 4-5). Otherwise, the current

request session will be discarded, and a new set of nodes

will be chosen randomly (lines 7-11). This lightweight pro-

tocol ensures a notion of weak consistency with a significant

performance advantage and provides the required reliability

for a volatile Edge environment. Such leaderless protocols

have found applications in many recent distributed database

systems, such as Cassandra, allowing faster transactions.

IV. PERFORMANCE EVALUATION

The proposed monitoring framework is implemented as

a multithreaded application with Python language, realizing

Algorithm 1 and Algorithm 2. The monitoring process creates

a main thread controlling the application’s business logic,

while two other threads, sender and receiver, are used for

gossiping, i.e., for message sending and receiving. Each node

collects its own utilization metrics in predefined intervals using

the "psutil" tool, updates the system state, and increments

its time counter. The entire application is containerized using

docker and deployed as a background daemon in all the

Edge nodes, and a lightweight FLASK framework is used

for establishing the REST APIs communication among the

Edge nodes. This makes our DEMon agent lightweight and

interoperable for resource-constrained heterogeneous devices

with a small resource footprint.

A. Experimental Setup

Kubernetes Cluster

K8s port forward
service

http process call

: Gossip Agent

REST API EndPoints

Gossip Send Gossip Recieve

 System State
Node
State

Linux
APIs

Node 1

Node 2

Node 3

Node 4

pod

Fig. 2: DEMon implementation on Kubernetes emulating large

scale Edge environment, each pod representing an edge node

We deployed our system on the Kubernetes (K8s) cluster

and configured the system to emulate real-world Edge infras-

tructure, as shown in Figure 2, a schematic representation of

our testbed. The K8’s cluster has four nodes, each having a

resource allocation of 8 cores and 8 GB of memory. Each

Fig. 3: Convergence vs rounds (gossip rate =3)

pod in the Kubernetes cluster represents an Edge node, and

our containerized application runs inside these pods. It is

important to note that no changes are required to deploy

the DEMon on the new Edge infrastructure. We scaled Edge

nodes (i.e., pods) from 0 to 150. We utilize Kubernetes port

forwarding services for the pods, enabling direct commu-

nication between all pods. We conducted experiments with

different hyperparameter values, including gossip_count
and gossip_rate, and analyzed the results. The following

important metrics are measured.

Convergence: This represents the time at which when every

node knows about every-other node from the start of the

monitoring process. In our case, gossiping continues forever

to spread recent information across the system.

Query latency: This represents the number of messages

required to retrieve the information about any particular node

based on Algorithm 2.

Age of Information: This represents the timeliness (freshness)

of the information stored in each node (as monitoring infor-

mation is continuously updated). We measure this by using

the Age of Information (AoI) metric [19], defined as:

AoI =
1

n

n∑

i=1

ti − u(ti) (1)

where n is the total number of other node’s information a

current node has, and ti is the actual time counter of remote

nodei, and u(ti) is the current time counter of nodei. To

illustrate, let us assume two nodes, node_1 and node_2. The

AoI of node_1 is the difference between the time counter

of node_2 at node_1, i.e., u(t) and the actual time counter

at node_2 itself, i.e., t.

B. Results and Analysis

1) Convergence Analysis: In this experiment, we scaled the

number of Edge nodes (pods) upto 150 with an interval of 25.

All experiments are repeated three times, and average values

are reported. Figure 3 shows the number of gossip rounds

required to reach the initial convergence state (when each

node knows every other node). Since each node has its gossip

round running locally, we consider the maximum gossip round

among all nodes as system convergence. Here, we configured

gossip_count = {1, 2, 3, 4} and gossip_rate to 3.

The higher value of gossip_count spreads the information

quickly, and converges faster, which denotes that when a new

node (re)joins, it is able to know about all other nodes in fewer

148

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:58:15 UTC from IEEE Xplore. Restrictions apply.

(a) Effect of gossip rate on
number of messages

(b) Effect of gossip rate on time

Fig. 4: Sensitivity analysis of gossip rate parameter

(a) Effect of gossip count on
number of messages

(b) Effect of gossip count on
time

Fig. 5: Sensitivity analysis of gossip count parameter

gossip rounds. For instance, when gossip gossip_count=4,

the system converges within four rounds.

Figure 4 depicts the effects of gossip_rate on the

number of messages and time during the initial sys-

tem convergence. Here, each node’s monitoring interval

and gossip_rate are set to similar; thus, for each

gossip_rate second, a node sends its new state.

We configured gossip_rate = {2, 4, 6, 8} seconds and

gossip_count to 3. When the number of nodes in-

creases, the total number of messages simultaneously in-

creases, demonstrating that a higher number of message ex-

changes are required for a large number of nodes, as shown

in Figure 4a. Irrespective of gossip_rate, the number

of messages is similar across all node sizes; representing

convergence requires an almost equal number of messages for

fixed system size and does not depend on gossip_rate.

However, gossip_rate affects the number of messages per

second. Therefore, if we want to control the bandwidth usage

or speed of convergence, gossip_rate can be configured

accordingly. Figure 4b shows the effect of gossip_rate
on convergence time. The smaller gossip_rate results in

faster convergence time and vice versa.

Similarly, gossip_count (i.e., decides number of ran-

dom nodes chosen for each gossip), also significantly affects

the performance, as seen in Figure 5. Here, we configured

gossip_count = {1, 2, 3, 4} and gossip_rate to 3. The

number of messages highly depend on system size (see Figure

5a). Consequently, gossip_count value strongly affects the

convergence time, as seen in Figure 5b.

Therefore, if faster convergence is required,

(a) AoI (gossip count=3) (b) New data (diamond marker
denotes initial convergence)

Fig. 6: Analysis of AoI and new data updates (system

size=150, gossip rate=3)

gossip_count should be set to a higher value and

gossip_rate to a smaller value. If minimal bandwidth

consumption is necessary, contrast values can be set to these

parameters. Hence, allowing greater flexibility to configure

according to the Edge environment needs.

2) Information Retrieval: The querying process follows the

logic explained in the Algorithm 2, where quorum_number
is set to 3. We generate quorum_number of parallel queries,

requesting the utilization metrics of a random node. Once

a node receives a request, it checks the local object store

based on the requested node IP as key and sends the data

in the format as described in Section III-A. We set different

failure rates from 0%-90% with the interval of 10% by

randomly disconnecting the failure_rate % of nodes

for each setting. We performed 100 queries each time for

different failure rates. The DEMon can remarkably provide

the information of a requested node without query failures.

This is because, since every node stores information of every

other node, even when 90% of the nodes fail, the queried node

information is successfully retrieved. We received the queried

information with a maximum number of messages of 19 and a

minimum number of messages of 3 (best case scenario, equal

to quorum_number), with an average value of 4.65.

3) Age of Information (AoI) Analysis: In this experiment,

we take a snapshot of the monitoring data from all nodes

every minute for 30 minutes. Once the system is converged

initially, for each interval, each node’s AoI is calculated based

on Equation 1. Figure 6a shows the overall AoI of the system

(average from all the nodes). The AoI gradually increases as

the time interval increases. This behavior is expected since ev-

ery node gossips to a very few nodes for each gossip_rate
seconds; it would take several further gossip rounds to reach

the updated information to other nodes, while each node

simultaneously updates their monitoring information, creating

a time delay between the two data instances. However, as

Figure 6b shows, the monitoring agents receive the newly

updated information of other nodes in each round, and the rate

of new updates is highly dependent on the gossip_count.

When gossip_count is set to 4, the average number of

new fresh data updates is almost equal to the system size (i.e.,

150). Therefore, if the most recent or fresh data is needed,

higher gossip_count values can be configured.

149

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:58:15 UTC from IEEE Xplore. Restrictions apply.

V. RELATED WORK

Traditional monitoring systems in Cloud data centers such

as Google’s Borgmon [20], and Prometheus [4] are mainly

centralized systems. On the other hand, existing Edge com-

puting platforms such as Kubernetes and KubeEdge depend

on a centralized control plane for monitoring, making them

infeasible for critical Edge infrastructures requiring strict la-

tency and reliability under failures. Researchers have made

many efforts to address the challenges in Edge monitoring.

In [6], authors proposed ”PyMon” to monitor container-based

computing architectures with a small resource footprint. The

solution is primarily targeted at IoT-based single-board Edge

devices. Similarly, the authors in [7] propose a network

monitoring approach for data streaming applications, where

each Edge node hosts a monitoring probe and pushes the data

to a centralized time-series database. The FMonE [8] proposes

the design of monitoring solutions considering elasticity and

resiliency and solving the unique challenges of Edge systems.

However, its storage and information processing depends on

centralized database systems. Some works have also explored

self-adaptive monitoring for multi-tier Fog computing systems

[9], [10]. The FogMon [10] and AdaptiveMon [9] proposes

hierarchical P2P architecture where lower-tier nodes are ded-

icated as followers and higher-tier nodes as leaders. All these

solutions exhibit a partially centralized architecture in the form

of leader nodes or aggregation functions.

Gossip protocol in monitoring: Gossip protocols have

found use cases in developing monitoring systems. Ward et

al. [21] propose monitoring large-scale cloud systems with

layered Gossip protocols grouping the resources into multiple

layers, from VMs to multi-region data centers. Similarly, As-
trolabe [14] is one of the earlier systems implemented based on

the Gossip protocol for distributed information management.

With the combination of peer-to-peer Gossip protocol, mobile

code, and SQL query language, the system is implemented

to manage the data collection, storage, and aggregation in

real-time by organizing resources in hierarchical domains. In

addition, the authors in [22] use the Gossip protocol to monitor

network-wide aggregates (such as AVERAGE, MIN, MAX).

However, the main focus in these works is on aggregating the

information of resources, and they do not address a complete

monitoring system’s requirements. Consequently, our objective

is to provide a framework and techniques for self-adaptive,

self-configurable, and trustworthy monitoring for volatile Edge

environments without limiting to a specific application task.

VI. CONCLUSIONS

The existing monitoring systems are centralized in architec-

ture, which increases information storage and retrieval latency

and creates failure bottlenecks, making them infeasible for

volatile Edge environments. To that end, we present a frame-

work called DEMon that is designed to work autonomously

without any external configurations and stores the monitoring

information in a decentralized manner. DEMon achieves this

through efficient information spreading based on the Gossip

protocol and configuring hyperparameters based on the system

properties. In addition, DEMon provides a trustable infor-

mation retrieval mechanism. A lightweight and interoperable

container-based prototype system is implemented. The exper-

imental results on the Kubernetes cluster show that DEMon

quickly spreads the monitored information and can retrieve the

information even when most of the nodes fail.

ACKNOWLEDGMENT

This work is partially funded through the RUCON project

(Runtime Control in Multi Clouds), Austrian Science Fund

(FWF): Y904-N31 START-Programm 2015 and the SWAIN

project, CHIST-ERA grant: CHIST-ERA-19-CES-005, FWF:

I 5201-N.

REFERENCES

[1] M. Satyanarayanan, W. Gao, and B. Lucia, “The computing landscape
of the 21st century,” in Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications, 2019.

[2] R. Buyya, S. N. Srirama et al., “A manifesto for future generation cloud
computing: Research directions for the next decade,” ACM computing
surveys (CSUR), vol. 51, no. 5, pp. 1–38, 2018.

[3] R. Olups, Zabbix Network Monitoring. Packt Publishing Ltd, 2016.
[4] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[5] S. Forti and et al., “Secure cloud-edge deployments, with trust,” Future

Generation Computer Systems, vol. 102, pp. 775–788, 2020.
[6] M. Großmann and C. Klug, “Monitoring container services at the

network edge,” in 29th International Teletraffic Congress, 2017.
[7] S. Taherizadeh, I. Taylor et al., “A network edge monitoring approach for

real-time data streaming applications,” in Economics of Grids, Clouds,
Systems, and Services. Springer, 2017.

[8] Á. Brandón, M. S. Pérez et al., “Fmone: A flexible monitoring solution
at the edge,” Wireless Communications and Mobile Computing, 2018.

[9] V. Colombo, A. Tundo et al., “Towards self-adaptive peer-to-peer mon-
itoring for fog environments,” in International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2022.

[10] S. Forti, M. Gaglianese, and A. Brogi, “Lightweight self-organising dis-
tributed monitoring of fog infrastructures,” Future Generation Computer
Systems, vol. 114, pp. 605–618, 2021.

[11] A. Demers, D. Greene et al., “Epidemic algorithms for replicated
database maintenance,” in Proceedings of the sixth annual ACM Sym-
posium on Principles of distributed computing, 1987, pp. 1–12.

[12] K. Birman, “The promise, and limitations, of gossip protocols,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 5, pp. 8–13, 2007.

[13] H. van Ditmarsch, J. van Eijck et al., “Epistemic protocols for dynamic
gossip,” Journal of Applied Logic, vol. 20, pp. 1–31, 2017.

[14] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining,” ACM transactions on computer systems, vol. 21, 2003.

[15] R. Azimi and H. Sajedi, “A decentralized gossip based approach for data
clustering in peer-to-peer networks,” Journal of Parallel and Distributed
Computing, vol. 119, pp. 64–80, 2018.

[16] H. Ditmarsch, D. Grossi et al., “Parameters for epistemic gossip prob-
lems,” in LOFT 2016-12th Conference on Logic and the Foundations of
Game and Decision Theory, 2016.

[17] K. R. Apt, E. Kopczynski, and D. Wojtczak, “On the computational
complexity of gossip protocols,” in IJCAI, 2017.

[18] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed
Computing Column) 32, 4, pp. 51–58, 2001.

[19] A. Arafa, R. D. Yates, and H. V. Poor, “Timely cloud computing:
Preemption and waiting,” in 57th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton). IEEE, 2019.

[20] B. Beyer, C. Jones et al., Site reliability engineering: How Google runs
production systems. ” O’Reilly Media, Inc.”, 2016.

[21] J. S. Ward and A. Barker, “Monitoring large-scale cloud systems with
layered gossip protocols,” arXiv preprint arXiv:1305.7403, 2013.

[22] F. Wuhib, M. Dam et al., “Robust monitoring of network-wide ag-
gregates through gossiping,” in 2007 10th IFIP/IEEE International
Symposium on Integrated Network Management, 2007, pp. 226–235.

150

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:58:15 UTC from IEEE Xplore. Restrictions apply.

