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a b s t r a c t

Resource management in data centres continues to be a critical problem due to increased infrastructure
complexity and dynamic workload conditions. Workload and energy consumption prediction are
crucial for efficient resource management decisions in cloud data centres. Existing solutions only
consider forecasting the usage of virtual machine resources such as CPU and memory; they do
not consider provisioned resources (CPU and memory) and disk, network transmission rates, which
significantly affect the energy consumption of the host as well. VM-level energy consumption can be
estimated for automated energy management decisions in modern data centres. However, it is not easy
to measure energy for VM devices such as CPU, memory, and disk at the software level. In this way,
we propose an ML-based model to predict load and energy to aid resource management decisions.
For modelling workload predictions, we investigated several distinctive ML algorithms such as Linear
Regression (LR), Ridge Regression (RR), ARD Regression (ARDR), ElasticNet (EN) and deep learning
(DL) algorithm like Gated Recurrent Unit (GRU). The model’s predictions are measured using standard
evaluation metrics like root mean square error (RMSE). We have discovered that GRU has performed
very well by accomplishing the most negligible RMSE value for all the workload performances based
on experimental results. For energy state estimation, we propose four diverse clustering algorithms,
including, semi-supervised affinity propagation based on transfer learning (TSSAP), CLA based on
transfer learning (TCLA), kmeans based on transfer learning (TKmeans), P-teda based on transfer
learning (TP-teda) to discover similar groups of VMs dependent on features that may influence energy
consumption as opposed to estimating it for each VM. The TSSAP has acquired promising clustering
accuracy with 87.48% and 53.80% in identifying the VM classes which have been calculated using
standard metric such as micro-precision for the chosen workload in compassion to affinity propagation
(AP) and the average of other proposed clustering algorithms respectively.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing is an Internet-based computing paradigm
hat is capable of providing on-demand services to the end-users
hrough virtualization of hardware resources in data centres [1].
esource management is often a difficult task in a data centre
ue to multitenant users, changing workload conditions, and ex-
remely complex infrastructures. The modern data centres com-
rise highly non-linear workloads. For instance, in an IBM survey,
verage CPU and memory usage of cloud workloads vary between
7.76% and 77.99% [2]. According to a study conducted by Google,
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the CPU and memory consumption of a cluster could not exceed
60% leaving a large resource inefficiency in Cloud data centres [3].
Consequently, the workload’s non-linearity usage patterns result
in inconsistent performance, high energy consumption, and de-
graded quality of services (QoS). In addition, it raises operating
costs and causes service providers to lose revenue. Since data cen-
tres are expensive to build and operate, it is necessary to optimize
resource usage. An intelligent resource prediction approach can
effectively resolve the issue to increase resource usage and reduce
operating costs while ensuring the application’s Quality of Service
(QoS).

A prediction mechanism produces insights into the future
demand of a particular resource such as CPU, memory, disk and
network based on rich historical workload. These predictions can
be used to deal with non-linear resource utilization and energy

consumption in the data centres and aid resource management
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ecisions such as resource provisioning and VM consolidation etc.
or instance, a resource provisioning mechanism based on these
uture insights can deal with efficient resource allocation (i.e., al-
ocating more or fewer resources to VMs based on their needs).
urthermore, decisions can be more proactive than current reac-
ive approaches (e.g., provisioning required resources beforehand
o improve QoS and avoid bottlenecks such as resource bootup
ime). In this regard, ML techniques can be used to make work-
oad predictions [4]. ML-based predictions are ideal because they
re derived from real features and capable of learning highly
on-linear workload behaviour caused by multiple factors in data
entre environments. Recent resource prediction works focuses
n CPU, and memory usage and ignore provisioned (requested)
esources such as CPU and memory [5,6]. When a new VM is
nstantiated on a host, these provided resources also make a
ignificant contribution to energy consumption [7]. Furthermore,
hey ignore resource metrics like disk throughput, which has
direct impact on a host’s energy consumption [8]. Another

ssential metric to consider when consolidating virtual machines
o save resources is network throughput [9]. Furthermore, many
achine learning algorithms have been used to accomplish this

ask, but no single machine learning algorithm can address any
on-linear workload well. As a consequence, using an ensemble
earning method that involves several machine learning algo-
ithms to predict both provisioned and used non-linear workloads
ith various metrics such as provisioned CPU, provisioned mem-
ry, CPU usage, memory usage, disk throughput, and network
hroughput would be advantageous.

Along with workload forecasting, energy estimation is crucial
n data centre resource management. Energy consumption is a
assive challenge in data centres, and data centre providers

ntend to minimize overall energy consumption through efficient
esource management. The hosts in modern data centres have
arious sensors to monitor energy at the host level. Recent re-
earch [10,11] have focused on calculating energy consumption
or each virtual machine (VM) using various power models. How-
ver, it is not easy to calculate the energy consumption of VMs
t the software level. For instance, the energy consumption of
emory is determined based on the events raised by each VM
n each core’s last level cache (LLC). We need to collect these
LC metrics to determine energy consumption, which makes cal-
ulating the energy of each VM a difficult task [12]. Therefore,
nstead of calculating energy for each VM, we chose to look at
atterns of similar VMs in different energy-consumption states.
his is done by examining the available features related to energy
onsumption and using clustering analysis to identify VMs with
imilar patterns.
In this work, we use real work workload traces to build the

rediction models. We mainly use Bitbrains data [13], which
ncludes provisioned and used resource performance of several
housand VMs hosted in distributed Clouds. We propose pre-
iction modelling for two tasks, i.e, workload prediction and
nergy state estimation of VMs, respectively. Our system model
onsists of two parts: Resource Management System (RMS) and
he Prediction Module. We present an implementation of the
rediction Module in this paper. In this regard, we investigate
arious machine learning techniques for workload prediction, and
he best models are chosen for further RMS actions. We use an
nsemble learning approach to deal with energy state estimation
nd propose four different clustering methods to consider the
est performing algorithm among semi-supervised affinity prop-
gation based on transfer learning (TSSAP), CLA based on transfer
earning (TCLA), kmeans based on transfer learning (TKmeans),
nd P-teda based on transfer learning (TP-teda). Based on our
xperiments, the TSSAP outperformed other methods by achiev-

ng the highest accuracy in clustering. Furthermore, we use the
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Univariate selection method with the ChiSquare (χ2) test to select
the highly relevant features related to energy-consuming states in
this method. Afterwards, we use t-Distributed stochastic neigh-
bour embedding to cluster these features in the two-dimensional
plane (t-SNE). Eventually, this clustered data is transferred to
a different domain for further clustering analysis by using four
clustering algorithms such as AP [14], CLA [15], Kmeans [16] and
P-teda [17].

In summary, the key major contributions of this work are as
follows:

• We propose an intelligent prediction modelling based on
machine learning for two tasks: workload prediction and
energy state estimation.
• We explore different ML algorithms for workload prediction

in nonlinear conditions using features comprising provi-
sioned and utilized resources from a cloud hosting dis-
tributed data centre. The features include performance met-
rics, such as provisioned CPU, provisioned memory, CPU
utilization, and memory utilization, disk throughput and
network throughput.
• We present a novel approach to VM-level energy state esti-

mation using an ensemble learning approach that includes
four different proposed clustering methods for identifying
similar groups of VMs based on VM-level features that may
affect energy consumption.
• In our workload prediction models, GRU provides the least

RMSE values for all features.
• In our energy state estimation models, TSSAP obtains a

significant accuracy of 53.80% to identify VMs’ classes in
comparison to other clustering models.

The rest of the paper is organized as follows: Section 2 dis-
cusses the relevant literature for this project. Section 3 explains
the motivations for this work as well as the implications of re-
source management in the cloud. A resource management model
is proposed in Section 4. The used cloud workload traces are
described in Section 5. Section 8 is where performance and results
are analysed. Finally, Section 9 concludes the paper and provides
the future directions.

2. Related work

Machine learning-based prediction has been extended to a
wide range of applications. Workload prediction and E-state pre-
diction are two tasks performed by our model. The important
work associated with both tasks is mentioned below. Tables 1 and
2 show a comparison of our research with related work.

First, we discuss related work for the proposed model’s first
task. In the proposed system Resource Central, Cortez et al. [5]
used the Random Forest method to predict CPU utilization in
released traces of Microsoft Azure VM workload (RC). This sys-
tem obtains VM features and learns these behaviours offline
using machine learning before providing online prediction to
various resource managers via a client-side library. Islam et al.
[18] proposed an evolutionary approach to build an effective
prediction model for CPU utilization for adaptive resource pro-
visioning in the cloud, based on the machine learning algorithm
Linear Regression (LR). It can help e-commerce applications with
dynamic and proactive resource management scheduling and
capacity planning. They used a dataset generated by the TPC-W
benchmark. Barati and Sharifian [19] used a tuned support vector
regression method in Google cloud workload traces to predict
CPU and memory utilization for the purpose of proactively re-
source provisioning to keep resource utilization and service level
agreements (SLAs) at an acceptable level. Farahnakian et al. [20]
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able 1
comparison on resource parameters and algorithms with related work.
Study Provisioned resources Utilized resources Algorithms

Provisioned
CPU

Provisioned
memory

CPU
utilization

Memory
utilization

Disk
throughput

Network
throughput

Cortez et al. [5] › › � › › › RF
Islam et al. [18] › › � › › › LR
Barati and Sharifian [19] › › � � › › t-SVR
Farahnakian et al. [20] › › � › › › LR
Farahnakian et al. [21] › › � › › › KNNR
Abdelsamea et al. [22] › › � � › � MR
Farahnakian et al. [6] › › � � › › Regression method
Proposed model � � � � � � LR, RR ARDR EN, deep

learning (GRU)
Table 2
A comparison on power model and algorithms with related work.
Study Power Model ML

Kansal et al. [23] � ›
Chen et al. [24] � ›
Wen et al. [25] � ›
Krishnan et al. [26] � ›
Quesnel et al. [27] � ›
Aldossary and Djemame [10] � ›
Gu et al. [11] � ›

Proposed model › �

used Linear Regression to predict short-term future CPU utiliza-
tion based on each host’s historical data. This process was used to
determine whether a host was overloaded or underloaded based
on predicted future CPU usage during live VM migration. When a
host becomes overloaded, some VMs migrate to other hosts, and
when it becomes underloaded, it switches to sleep mode to save
energy. This process is known as VM consolidation. Farahnakian
et al. [21] used the k-nearest neighbour regression method to pre-
dict CPU utilization in a real-world PlanetLab workload. The CPU
utilization performance of over a thousand VMs was recorded
at 5-min intervals for this workload. This prediction was used
to reduce energy consumption during the VM consolidation pro-
cess. In order to reduce energy consumption, Abdelsamea et al.
[22] used multiple factors such as CPU, memory, and bandwidth
utilization instead of just CPU utilization for prediction using
Multiple Regression from real workload traces in the VM consoli-
dation process. Farahnakian et al. [6] used a regression method
to predict CPU and memory utilization from two real work-
load traces, Google cluster and PlanetLab. They consider both
current and future resource utilization to determine whether a
host is overloaded or not during the VM consolidation process,
avoiding unnecessary VM migration and lowering a host’s energy
consumption.

The related work for the model’s second task is discussed
ere. Kansal et al. [23] proposed Joulemeter, a virtual machine
ower metring system that measures energy consumption at the
M level using VM resources at runtime. They presented power
odels that used VM resources such as CPU, memory, and disk

n the virtualized platform to measure energy at the VM level.
n the GreenClouds project, Chen et al. [24] presented a linear
nergy model that represented the behaviour of a single host
nd included different components, such as CPU, memory, and
DD, all of which contribute to the total energy consumption of a
ingle host. Because VM energy consumption cannot be measured
y any power sensor, Wen et al. [25] proposed a VM power
etring method based on performance events counter values

rom resources such as the CPU and memory. Krishnan et al.
26] looked into the feasibility and challenges of developing mod-
ls for black-box online monitoring in VM power metring, and
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presented a linear model to track the system’s power. Quesnel
et al. [27] presented a linear model for calculating total energy
consumption based on static and dynamic resource consumption.
In the TANGO project, Aldossary and Djemame [10] presented
an energy-based cost model that takes energy consumption as
the main parameter in relation to the actual resource usage of
VM. Gu et al. [11] presented a tree-regression-based method for
estimating the power consumption of VMs on the same host. For
each VM, Jiang et al. [28] presented a two-dimensional lookup
table. CPU utilization, last level cache (LLC) miss rate, and the
power value computed from CPU utilization and LLC miss rate
are all included in the table.

3. Motivation: Intricacies in cloud data centre’s resource man-
agement

Resource management is a critical component in a distributed
cloud data centre operations. The presence of multi-tenant users
and their heterogeneous workloads makes estimating the work-
load level and energy consumption. In cloud data centres, the
hosts have varying numbers of virtual machines over time. As
a result, the host experiences variable workloads and energy
consumption. It is crucial to analyse the non-linearity of VM
workloads, examine host characteristics such as whether they are
over-utilized and under-utilized, and take resource management
decisions accordingly (e.g., resource provisioning and VM consol-
idation). The data-driven methods based on machine learning are
being researched to save energy and optimize resource usage. The
parameters like CPU, memory, disk and idle power all contribute
to a host’s total energy [8]. To accurately estimate the energy
consumption of the host, all the necessary contributing elements
should be considered.

The CPU has a significant impact on the host’s energy con-
sumption, particularly when running CPU-intensive applications.
The authors in [23] ran a series of tests and discovered that
in mixed workloads, the CPU consumes 58% of the total host’s
energy. According to other studies [29] and [23], memory ac-
counts between 20% to 30% of the total energy by a host due to
memory accessing and page swapping at the host level. However,
measuring the power of each VM at the VM level is difficult due
to the need to collect LLC (last level cache) events raised by each
VM on each core [12]. In the case of disks, however, energy is
generated by spinning platters and disk head movement. [23]
also presented a linear energy model based on disk read and
write throughput in their research. Resource provisioning and
VM consolidation are the two main ways to deal with energy
efficiency. VM consolidation aims to improve resource utilization
and energy efficiency by consolidating VMs to fewer hosts via
VM migration while ensuring SLAs [30]. Intelligent predictive VM
consolidation is being used these days, which is considered to
be more efficient. Network throughput, on the other hand, is an
important metric that can help with VM consolidation to save
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Fig. 1. fastStorage: CPU Usage [%] sample at 5 min interval.
nergy indirectly by reducing resources [9]. According to a study,
y 2020, 51,774 GB/sec of internet traffic will be generated as a
esult of computing as a service via cloud computing, which will
ave an impact on cloud networks [31]. As a result, in the case
f dynamic VM placement, this factor will affect VM migration
ime and violate SLA [32]. However, some researchers considered
redicting CPU utilization only in the case of VM consolidation to
ave energy [1]. Therefore, the above facts indicate that elements
uch as memory and disk throughput and network throughput
hould also be considered for prediction in VM consolidation to
ave energy.
Furthermore, resource provisioning is the allocation of physi-

al resources based on an estimation to improve resource utiliza-
ion and energy efficiency. This estimation based on the predic-
ion of future resource behaviour can better deal with efficient
esource provisioning. This estimation, based on future resource
ehaviour predictions, can help with resource provisioning more
fficiently. For a prediction-based estimate in resource provi-
ioning, the majority of researchers focused solely on the use
f physical resources like CPU, memory, storage and network
andwidth [33]. However, the current study does not take into
ccount both provisioned and utilized resources when making
redictions. In [7], the power models show that when a host
nstantiates a new VM, provisioned CPU and memory have a
inear relationship with energy consumption. As a result, resource
rovisioning based on estimating the combined provisioned and
tilized resources can provide a better perspective for IaaS service
roviders to save energy.
To understand the intricacies of power consumption of a host,

e did a case study on workload traces. We obtained CPU usage
%) of two different VMs sampled at 5-minute intervals in a
astStorage trace obtained from Bitbrain’s data set as shown in
ig. 1. If a host’s peak CPU utilization exceeds a fixed threshold
e.g., 80%) [34], it is considered over-utilized, and if it falls below a
elective threshold (e.g., 30%) [1], it is considered under-utilized.
e looked at 1250 VMs’ fastStorage data over a month. For ex-

mple, in Figs. 1a and 1b, peak CPU utilization is between 80% and
00% and 3.5% to 4% for two different VMs, respectively. The CPU
apacity for both of these VMs in the same trace is the same. As
result, it is clear that during a given month, CPU utilization for
M-1 reached up to 97.87%, while CPU utilization for VM-2 could
ot exceed 3.8%, indicating that a host is either over-utilized or
nder-utilized in this long run. According to [8], the CPU has a
irect linear relationship with the total energy consumption of
he host. It means that if a host’s VM’s CPU is over-utilized, it
onsumes a lot of energy, and if it is under-utilized, its processing
ower is wasted, yet spending a large amount of energy in terms
f idle power.
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In terms of energy efficiency, both cases such as workload
forecasting and energy state estimation are critical for a data
centre and must be addressed. As a result, observing the energy
of each VM for the total energy of a host would be appropriate.
Each component of a host, such as the CPU, memory, and disk,
contributes to the total energy of the host [8]. Thus, monitoring
energy of hosts can benefit from the visibility of energy consump-
tion at the VM level, but measuring energy consumption of VM
devices at the software level is extremely difficult. LLC (last-level-
cache) events raised by each VM on each core must be collected at
the VM level, making it more difficult to measure [12]. As a result,
rather than measuring the energy of each VM, we decided to
analyse the patterns of similar VMs that are suffering from over-
utilization and under-utilization. Clustering analysis can be used
to look for VMs that have similar patterns. The research is going
towards automation Thus, to learn these states by the machine
automatically, we use a machine learning approach such as clus-
tering, which automatically finds similarities between features
and divides data into similar and dissimilar categories. Based on
the factors discussed above, we consider the four different cases
of peak CPU utilization as low, medium, high, and critical, respec-
tively, 0%–40%, 40%–70%, 70%–95% and above 95%. The cases low
and (high, critical) correspond to under-utilized and over-utilized
i.e., low and high, critical energy-consuming states denoted by
“E-state” (see Table 5). This type of analysis is carried out by
observing which VMs are correctly divided using four proposed
clustering methods. Our approach is not limited to these ranges;
it can be seen by experimenting with different ranges based on
the workload’s observations.

4. System model

A cloud platform is made up of several physical machines that
provide end-users with on-demand services, and applications are
deployed on these physical machines using virtualisation tech-
niques. Fig. 2 depicts an overview of our system model. We chose
a data-driven, machine-learning approach that uses historical
application workload to learn from the past and predict the future
workload level and energy states of VM. ML algorithms learn
from historical data and help to make decisions in data-driven
approaches.

Our work focuses on two types of tasks: (1) workload predic-
tion, to which we investigate various machine learning methods
and select a model with the lowest RMSE value. (2) E-state
prediction, i.e., determining which virtual machines are in low
and high energy-consuming states, we propose four different
clustering methods for categorizing virtual machines based on
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Fig. 2. Proposed system model.

eatures related to energy consumption. To deal with these two
asks, we use real workload traces that include various features,
ncluding provisioned (CPU, memory) and used resources (CPU,
emory, disk, and network throughput). The proposed model’s
ain component is the Prediction Module. The Resource Man-
gement System (RMS) can take decisions for different resource
anagement tasks in cloud data centres; also, it makes energy
anagement decisions with the help of the Cluster Management
ystem from the Prediction Module. We only present the im-
lementation of its Prediction Module in this paper. Our future
ork will include the performance of RMS for resource provision-

ng, VM consolidation, and other management functions based
n the output of the Prediction Module. Therefore, the follow-
ng subsections discuss the critical components of its Prediction
odule.

. Workload traces

The ML-based prediction system is as good as the data used
o train and training data can include application and physical
evel features to train the model in the data centre domain [35].
hysical resource includes host-level resource usage such as CPU,
emory, IO, and so on, and application features include CPU
ycles, cache metrics, and so on. We use two traces represen-
atives collected from a distributed cloud hosting data centre
nd released by [13] that contains business-critical workload. A
usiness critical workload is obtained from a service provider
hat specializes in managed hosting and business computation
or enterprises. The details of this business-critical workload are
hown in Table 3 and the definition of each feature is shown in
able 4. The vCloud Operation tools record seven performances
er VM in these traces, which are sampled every five minutes.
These two traces collect data for 1750 virtual machines (VMs)

cross over 5000 cores and 20 TB of memory, accumulating over
million CPU hours in four months of operation, making them

ong-term and large-scale time series. The first trace, fastStor-
ge, contains 1250 virtual machines (VMs) connected to storage
324
Table 3
Distributed cloud data centre’s trace for this work.
Trace VMs Collection

period
Memory CPU

cores
Collection
interval

fastStorage 1250 30 days 17729 GB 4057 5 Min
Rnd 500 90 days 5485 GB 1444 5 Min

Table 4
Definition of features in workload trace.
Features Definition (Average)

RCPU Provisioned CPU capacity [MHZ]
UCPU CPU usage [MHZ]
Rmemory Provisioned memory capacity [kB]
Umemory Memory usage [kB]
Dth
r Disk read throughput [kB/S]

Dth
w Disk write throughput [kB/S]

N th
r Network received throughput [kB/S]

N th
t Network transmitted throughput [kB/S]

area network (SAN) storage devices, and its performance was
tracked for a month. The second trace, Rnd, contains 500 virtual
machines (VMs) connected to much slower Network Attached
Storage (NAS), and the performance of these traces has been
monitored for three months. The dataset is smoothed by taking
the average of each performance recorded for each VM [36]. We
compute 1250 entries as the average of each feature for each VM
in fastStorage trace for one month, and 500 entries for Rnd for
three months. As a result, we have a total of 1500 entries for Rnd.

6. Workload estimation using prediction algorithms

We choose regression-based methods for our workload pre-
diction because we want to estimate a numerical output variable
like CPU utilization, which have also been used in earlier work
on non-linear workloads such as (Linear Regression (LR), Ridge
Regression (RR)) [33], ARD Regression (ARDR) [37], ElasticNet
(EN) [38]. We also choose a deep learning method, recurrent
neural networks (RNNs) with gated units, commonly known as
gated recurrent units (GRUs) [39], as it outperforms traditional
RNNs with other units [40]. For fastStorage and Rnd traces, we
always consider the average of each VM resource over one month
and three months of data and make predictions for these VMs
based on this. The reason for selecting the average value has
been discussed in Section 2. Furthermore, the peak CPU utiliza-
tion in red rectangular boxes is rapidly decreasing after a short
time interval, as shown in Fig. 1(a), so it would be feasible and
efficient to use the average of each VM to train the ML model
and forecast the average prediction value of each VM provisioned
and used resources based on this learning. To implement all of
the ML methods, we use the sci-kit learn [41] and the Keras [42]
package to implement the deep learning method GRU. In this
implementation, the parameters for each of the ML methods are
set to their default values. The parameters for RR are set to
α = 0.2 and normalize = true. To predict the target variable,
all ML-regression methods are trained with multiple features. For
example, if the target variable is set to average CPU utilization,
the remaining features are chosen from the traces to train the ML
regression methods. Furthermore, we use the Root Mean Square
Error (RMSE) metric to assess the goodness of fit of various meth-
ods, which is a standard evaluation metric in regression-based
problems [43].

The RMSE can be defined as the dissimilarity forecasted value
of a network and the actual value. It can be stated mathematically
as follows:

RMSE =

√ 1
T

n∑
(Pi − P̂i)2 (1)
1
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n Eq. (1), Pi is actual value and P̂i is the forested output variable
by prediction network, and T is the total number of predictions.
As a result, the model will be more accurate if the RMSE values
are lower. In addition, the model is examined to be more precise
if its RMSE value is adjacent to 0.

Tables 6 and 7 show the performance of various ML-regression
methods and deep learning method. These results represent the
RMSE value for different features (see Table 4) of the selected
traces. We can see from these tables that the deep learning
method GRU has very low RMSE values, implying that residuals
or prediction errors are lower and predictions are more accurate.
Furthermore, different regression techniques have produced sim-
ilar results. Because GRU results are more promising and have
the lowest RMSE value. Therefore, we concentrate more on this
algorithm to explore it further and explain it in Section 6.1 below.

6.1. Learning with Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is introduced by [39] is the gated
recurrent unit (GRU). In this mechanism, we train the model with
80% of the target variable, such as CPU utilization, and the trained
model predicts with 20% of the target variable. The equations that
define the GRU architecture are as follows:

ut = σ (Wuxt + Uuht−1 + bu),
rt = σ (Wrxt + Urht−1 + br ),

h̃t = tanh(Whxt + Uhht−1rt + bh),

ht = utht−1 + (1− ut )h̃t

(2)

The vectors ut and rt , for example in Eq. (2), correspond to the
update and reset gates, respectively. The state of the vector at
time t is represented by ht . The activation function of both gates
are sigmoid function which is represented by σ . This function is
in charge of limiting the range of values for ut and rt from 0 to 1.
Furthermore, a hyperbolic tangent tangent function evaluates the
candidate state h̃t . The GRU network is fed with input xt (in our
ase, a vector of CPU usage (UCPU ) values) and the feed-forward
connections Wu, Wr , and Wh, as well as the recurrent weights Uu,
r , and Uh. Before non linearities in the network, the trainable
ias vectors bu, br , and bh are included.
In addition, the Pandas and Numpy [44] libraries are used to

load workload traces as a pandas data frame and convert integer
values to floating-point values that are more suitable for working
with a neural network. The data is re-scaled from 0 to 1 using the
MinMaxScaler. The dataset is then converted to a different shape
using the original dataset and the look-back parameter assigned
to 1, which denotes the number of previous time steps to be
used as input variables to predict the next period [33]. Besides,
this model consists of one input layer, one hidden layer, and one
output layer with one input, five neurons, and one output forecast
as optimized results are obtained with five neurons. In addition,
the model can be trained with more neurons to achieve better-
optimized performance. Eventually, the model is compiled using
mean square error as a loss function and Adam optimizer [45]
and the network is trained for epochs = 100 and batch_size =
64. We have optimized performance for these hyperparameters
as discussed in Section 8.2. We also use the validation_data pa-
rameter in the training phase, which is the data on which the loss
and any model metrics are evaluated for validation at the end of
each epoch, but the network is not trained on this data. After the
model has been fitted, the RMSE is used to evaluate the model’s
performance on test data.
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Table 5
E-states with CPU utilization.
Peak CPU utilization (%) E-state

0–40 Low
40–70 Medium
70–95 High
Above 95 Critical

Table 6
fastStorage: RMSE values of different algorithms in predicting different
features.
Features GRU LR RR ARDR EN

RCPU 3.46 417.66 1899.17 418.29 605.21
UCPU 0.44 911.95 1002.97 1886.30 923.67
Rmemory 9.29 9448342.05 7930792.37 8929672.01 9089470.08
Umemory 372.42 365978.61 384364.48 366817.80 366030.14
Dth
r 0.37 3176.39 3192.39 3245.52 3183.62

Dth
w 0.06 325.19 323.77 338.36 324.26

N th
r 0.33 53.17 54.18 68.22 53.37

N th
t 0.23 93.83 93.22 101.90 94.21

Table 7
Rnd: RMSE values of different algorithms in predicting different features.
Features GRU LR RR ARDR EN

RCPU 5.22 449.59 1541.14 442.51 449.59
UCPU 1.79 754.13 772.98 1134.96 766.42
Rmemory 9.85 24629258.91 25318293.39 24638065.90 24616865.76
Umemory 1262.93 441097.03 440142.87 433219.81 437761.33
Dth
r 1.59 746.05 722.07 744.29 750.16

Dth
w 0.76 407.76 396.37 435.44 403.39

N th
r 0.9 664.48 670.55 666.83 664.10

N th
t 0.61 603.97 604.41 605.55 609.79

7. VM energy state estimation using clustering algorithms

We propose four clustering methods to form similar groups of
VMs. we predict the energy state of a VM such as low, high and
critical. These models would help various resource management
decisions to increase the resource efficiency.

These techniques are based on the four clustering algorithms
listed below:

• AP [14]: This is an exemplar-based algorithm which is used
to propose TSSAP.
• CLA [15]: Every data point in this algorithm is given a mass

and is linked to a special force called the local resultant force
(LRF) generated by its neighbours.
• Kmeans [16]: This algorithm aims to group n data points

into K classes, with each data point being a neighbour of
the cluster centre closest to it.
• P-teda [17]: This algorithm is designed to handle high-

frequency data. This method incorporates the TEDA theory
concept and inherits all of its benefits.

In all of these methods, we use the [46] transfer learning
pproach to learn robust clusters for the target domain using
nowledge from a source domain. Therefore, we provide the
ame source domain knowledge to all methods, as discussed
n Section 7.1.1 for TSSAP. Apart from transfer learning, we re-
trict the affinity propagation (AP) algorithm to produce sev-
ral clusters equal to the actual number of clusters and per-
orm some additional additions such as semi-supervised learn-
ng using pairwise [47] and non-matrix factorization [48]. Thus,
emi-supervised affinity propagation based on transfer learning
TSSAP), CLA based on transfer learning (TCLA), kmeans based
n transfer learning (TKmeans), and P-teda based on transfer
earning are the names given to the proposed methods (TP-teda).
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Fig. 3. Workflow of TSSAP.

ecause TSSAP has produced promising clustering results, we will
rimarily focus on this method in the following subsections to
xplain it in detail.
TSSAP is a semi-supervised clustering method that can use a

mall amount of supervised data in the form of partial labels to
rovide some supervision to unsupervised data in order to form
ore accurate similar clusters. Since the results are promising,

his information about similar clusters is sent to the CMS. It
separates the clusters of VMs into Low, High, and Critical energy-
consuming states before submitting them to the Broker, which
then sends these three clusters to the RMS for further analysis.
Fig. 3 depicts the proposed model. This method’s operation has
been described in detail below.

7.1. Transfer learning-based semi-supervised AP

7.1.0.1. Transfer learning. Transfer learning is a type of learning
that focuses on learning robust classifiers for a target domain us-
ing knowledge from a source domain [49]. We use the univariate
feature selection method, in which the best features are chosen
using univariate statistical tests like the chi-square test [50]. It is
used in the context of feature selection on a labelled dataset to
see if the class label is independent of a given feature.

Definition 1. If a feature has m different values and k classes, the
chi-square score χ2 is calculated as follows:

χ2
=

m∑
i=1

K∑
j=1

(bij − νij)2

νij
(3)

where νij is the number of samples with the ith value and

νij =
ni.nj

n
(4)

The number of samples that take the ith value of a feature is bi
in this case. The number of samples in the jth class is nj, and the
number of samples in the input data is n.
 N
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We use t-Distributed stochastic neighbour embedding (t-SNE)
[49] to reduce high-dimensional features to two-dimensional fea-
tures via a matrix of pair-wise similarities after obtaining the best
features that are most related to class labels. It effectively divides
data into clusters, and we further cluster these divisions using
modified AP method that improves clustering accuracy.

Definition 2. Given a set of n high-dimensional data points
(y1, y2, . . . , yn), the conditional probability pj|i that corresponds
to similarities between two data points yi and yj, for i ̸= j,

pj|i =
exp(−∥yi − yj∥2 / 2vi

2)∑
k̸=i exp(−∥yi − yk∥2 / 2vi

2)
(5)

The Gaussian variance for data point yi is vi. This algorithm
then uses the gradient descent algorithm to minimize the sum of
Kullback–Leible divergence. Furthermore, the variance of the t-
Distribution is chosen as the parameters centred on the data point
yi in high-dimensional space. Since the density of data changes,
t is impossible to find a single optimal value for all data points.
-SNE produces a user-defined perplexity value with pi such that,

perp(pi) = 2h(pi) (6)

where h(pi) is the Shannon entropy of pi and defined as,

h(pi) = −
∑

j

L log L (7)

here L = pj|i.

.1.0.2. Modified AP. In AP, the input parameters are similari-
ies S(i, j) between data points and preference p, which is the
edian or minimum of calculated similarities. As a result, two-
imensional features derived from the t-SNE operation were
sed to calculate input similarities using Euclidean distances like
(i, j) = −∥xi − xj∥ and preference, p = min(S). The number of
lasses in data is not used as a parameter in AP, which results
n a random number of exemplars. It could have an impact on
P’s clustering performance. Therefore, in AP’s input, we pass
his supervised information, such as the number of classes K,
long with S(i, j) and p. The real-valued messages a(i, k) and
(i, k) are then computed by AP. We use non-matrix factorization
NMF) [48] to update similarities at this point.

efinition 3. Assume we have a X matrix with m features and n
amples. NMF decomposes matrix X into two matrix A(m×q) and
(q× n) such that,

X ≈ AB (8)

In detail, it can be expressed as,

X = AB+ e (9)

The matrix norm of X − AB is computed as e. X is made up
f similarities between data points calculated using the S(i, j)
uclidean distance. As a result, the NMF method is applied to
(i, j), which is decomposed into A and B. These elements are
pgraded repeatedly in order to reduce the estimation error X ≈
B. Various operations, such as Euclidean distance, can be used to
alculate the distance between AB and X ,

deuc(A, B) =
1
2
∥X − AB∥2 (10)

nd similarities S(i, j) is updated with matrix A, such that

S(i, j) = A(i, j) (11)

To provide more supervision to the updated similarities from
MF, we use semi-supervised learning. Semi-supervised learning
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m

ridges the gap between unsupervised and supervised learning
y incorporating both labelled and unlabelled components. When
nlabelled data is combined with supervised data, the learning
ate increases. Semi-supervised clustering has recently gained
opularity, in which little supervision is provided by using var-
ous side information methods such as instance-level constraints,
artial labels, and relative distance comparisons to increase pre-
ision in unlabelled data partitions. This method makes use of
he instance-level constraints introduced by [47] to improve the
ccuracy of the results. These constraints indicate that two data
oints must link must − link if they are in the same cluster, but
annot link cannot − link if they are in different clusters.

efinition 4. Assume that a data set Y = {y1, y2, . . . , yn} exists,
and that the cluster information is represented by a set γ ⊂ Y×Y ,
where γ = ml ∪ cl, and that for (i, j) ∈ (1, 2, . . . , n),

ml = {(yi, yj) ∈ Y × Y : yi and yj ∈ same cluster}
cl = {(yi, yj) ∈ Y × Y : yi and yj ∈ different clusters}

(12)

The constraints for each pair of data points were determined
using 30% of the actual labels, and the similarities obtained from
NMF were updated again using these constraints. Similarities
S(i, j) for two data points (yi, yj) are updated with 1 or 0 if they
are in the same cluster or not, respectively, for (i, j) ∈ (1, . . . , n),
such that,

(yi, yj) ∈ ml ⇒ S(i, j) = 1 & (yi, yj) /∈ ml ⇒ S(i, j) = 1 (13)

Finally, using this similarity matrix as shown in Eq. (13), a
fine set of potential exemplars is obtained. We also limited AP
to producing a random number of exemplars by using a small
amount of supervised data K that is passed into AP’s input. The
accuracy of clustering improved as a result of this. The TSSAP
pseudo code is shown in Algorithm 1:

Algorithm 1: Pseudo code of the proposed clustering
approach TSSAP

Input: Features, labels, No. of clusters K
Output: E-state

1 R = [ ], temp = [ ], X = [ ], f1 = [ ], f2 = [ ];
/* Transfer Learning */

2 f1 ← χ2(Feature, labels)
3 Select highest 4 in χ2 score features from f1
4 x← tsne(f2, euclidean)
/* Semi-supervised AP */

5 S(i, j)← Euclidean(xi, xj)
6 p← min(S)
7 Pass S(i, j) and p in AP’s input
/* Execute AP, iter = 10 times */

8 Compute A(i, k) and R(i, k)
9 (a, b)← nnmf (S(i, j))

10 S(i, j)← a(i, j)
11 s← .3(lables)
12 for i = 1 to length(s) do
13 for j = i + 1 to length(s) do
14 if (xi, xj) ∈ cl then
15 S(i, j)← 0
16 else
17 S(i, j)← 1

/* where C denotes cannot-link constraints
*/

18 return idx
19 E-state← idx
c
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7.1.1. Learning with semi-supervised affinity propagation based on
transfer learning (TSSAP)

We chose one month of fastStorage trace data for the proposed
method’s learning, which includes the performance of 1250 VMs
running in a distributed data centre. As discussed in Section 2, the
data from these VMs was analysed based on peak CPU utilization
and labelled into different ranges. These ranges correspond to
various energy-consuming states, as peak CPU utilization largely
determines under- and over-utilization, i.e., low and high, critical
energy consumption in the case of VMs assigned to hosts. As a
result, the features of the 1250 VMs are used as the proposed
method’s input. As a result, it would be practical and appro-
priate to analyse similar patterns based on these performances
and observe the results with these ranges. The first step in the
proposed method is to analyse the features using the univariate
selection method. This method’s SelectKBest uses a χ2 test with
= 4 to select the best 4 features with a χ2 score. We use t-

Distributed Stochastic Neighbour Embedding (t-SNE) to cluster
the selected features such as RCPU , UCPU , Rmemory, and Umemory in
a 2-dimensional plane after capturing the best features related
to defined E-state. The data is then transferred to the modified
AP model’s input, which more precisely clusters the data into
different energy-consuming states.

Predicted Class
1250 VMs
←−−−→

E-state
Cluster(RCPU ,UCPU , Rmemory,Umemory) (14)

n detail, this information is used to compute a similarity matrix
sing pairwise euclidean distance with n number of data points,
esulting in a n × n similarity matrix S. Following that, the
reference parameter p is set to p = min(S) / iter × 0.3,
ith iter denoting the iteration number, which is iter = 10.

To improve accuracy, the preference parameter p can be tweaked
with different input values. In our case, p = min(S) / iter × 0.3
rovides optimal performance. The parameters S and p, as well as
he number of classes (K ) and labels labels, are passed into AP’s in-
ut for further calculations in order to evaluate the final clusters.
urthermore, TSSAP provides predicted labels for VM partitions.
.e., each VM’s predicted energy consumption states out of 1250
Ms. These predicted labels are compared to actual labels using
tandard evaluation criteria such as micro-precision. This metric
s chosen because it compares the actual labels to the predicted
abels to assess the accuracy of clustering approaches [51]. As a
esult, it also applies to our situation, because we define different
anges based on peak CPU utilization.

If a data set has K classes and n data points, the micro-
recision MP is defined as in Eq. (15):

P =
1
n

K∑
i=1

ci (15)

where n is the number of data points and ci is the number of data
points assigned to the corresponding class in cluster i. The value
f MP is in the range 0 ≤ MP ≤ 1, with 1 representing the best
ossible clustering result with actual class labels. As a result, if
he MP value of the clustering model is closer to 1, it is thought
o be more accurate.

. Performance evaluation

In this section, we assess the performance of the proposed
odel in conjunction with the prediction module, as well as
ompare the results.
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.1. Experimental setup

The tests are performed on a machine with an Intel(R) Core
TM) i3-4030U CPU running at 1.90 GHz and 4 GB of main
emory. The proposed model’s Prediction Module accomplishes

wo tasks: (1) implements various prediction algorithms using
yCharm Community 2020.2, and (2) predicts E-state using the
roposed clustering methods implemented using PyCharm Com-
unity 2020.2 and Matlab R 2019a.
We use the sci-kit learn [41] package to implement all ML-

ased regression techniques. Furthermore, we use the Keras [42]
eep learning library to implement GRU. We use a real-world
ataset from Bitbrain [13], which we discuss in Section 4. This
ataset was chosen because it contains both provisioned and used
esources that meet the requirements of our first targeted task,
nd most importantly, it contains real-world cloud infrastructure
sage patterns. Since the model requires the most promising
redictions among all the prediction algorithms implemented, all
f the prediction algorithms are evaluated using RMSE to observe
he least residual errors of the predictions with actual data. For
he second task, we use Pycharm 2020.2 to extract knowledge
rom one-month data of the fastStorage trace using Pycharm’s
hiSqure test and Matlab’s t-sne. The data is then fed into four
ifferent clustering algorithms in Matlab’s programming tool,
ncluding modified AP, CLA, Kmeans, and P-teda. To identify the
ost promising results, all of the proposed clustering methods
re evaluated using micro-precision. We primarily focus on TSSAP
esults in Section 8.2 because it has produced the most promising
lustering results in comparison to other proposed methods in
ur case.

.2. Analysis of results

The prediction Module is used in the proposed model to han-
le two tasks: workload prediction and E-state prediction. First,
e will go over the workload prediction results. The prediction
odule is capable of experimenting with various machine learn-

ng methods in order to provide workload predictions for various
orkload types. We investigate different machine learning (ML)
ethods and a deep learning method, such as LR, RR, ARDR, EN,
nd GRU, for predictions on different types of workload, including
rovisioned (RCPU , Rmemory) and utilized (UCPU , Umemory, Dth

r , D
th
w , N th

r ,
N th

t ). The lower the RMSE, the more accurate the forecast. The
parameters for each ML method and GRU are detailed in Sections
Section 6, while the outcomes of predicted cases in terms of
performance measure are shown in Tables 6 and 7 for fastStorage
and Rnd traces, respectively. These tables show the RMSE values
achieved using the various methods. Tables 6 and 7 show that
none of the ML algorithms, LR, RR, ARDR, and EN, fit the dataset
well and produce consistent predictions. By observing results, it
is concluded that when workload feature has a small digit value,
the RMSE value is very less. For example, RCPU , UCPU , Dth

r , D
th
w , N th

r ,
N th

t have smaller digit values than Rmemory and Umemory, and so have
lower RMSE values. It may be deduced that none of these models
are capable of making accurate and reliable predictions.

However, in comparison to other ML approaches that have
very big RMSE values indicating poor performance, the deep
learning method GRU acquires very few RMSE values for all fea-
tures. GRU, in particular, is better than ML regression algorithms
at modelling workload time series. One of the most important
features of GRU is the presence of two vectors that determine
what information should be sent to the output. They are unique
in that they can be taught to retain knowledge from the past
without washing it away over time or removing information that
is unrelated to the forecast.

As a result, GRUs perform better because they can keep track
of context-specific temporal dependencies between workload
328
Table 8
GRU model training at different hyper parameters.
Epochs batch_size Train score Test score

10 32 2.09 0.81
40 32 1.77 0.39
100 32 1.76 0.46
10 64 2.66 1.26
40 64 1.79 0.52
100 64 1.76 0.44

features for a longer time while making future predictions. The
results also show that when the dataset is large, GRU provides
superior accuracy. With more data, the model can extract more
patterns and change the layer weights more precisely, but with
traditional regression approaches, the smaller the data, the higher
the accuracy. As the tables show, a large dataset reduces the
accuracy of traditional regression methods.

Furthermore, by using a better infrastructure such as a GPU
cluster, we can expect to obtain lower residual errors in predic-
tion provided by GRU with a larger training dataset and more
hyper parameter tuning. We are not interested in using hyper
parameter tuning to get the best model possible; instead, we
want to provide a generic model that can be applied to other
models. However, we used different hyper parameter values, such
as epochs and batch size, to train the GRU model. The iterations
over which the input data is provided are referred to as the
epochs. The batch size parameter specifies the number of samples
to be updated per gradient update; it is set to 32 by default.
Table 8 shows how the model is trained using various hyper
parameters.

If the model is well trained on the data, it is thought to provide
better performance. Table 8 clearly shows that the model trained
at epochs = 100 has the least trained RMSE score in both batch
sizes, 32 and 64. Per gradient update, the number of samples
is specified as 32 or 64. The case where batch size is 64 will
obviously train the model faster than the case where batch size is
32. For these reasons, we choose the epochs = 100 and batch size
= 64 tuning case for all features in order to train the model with
the best performance. We chose to represent GRU results visually
because the results have been found to be promising. Figs. 4 and
5 show visual representations of GRU results for fastStorage and
Rnd. For fastStorage and Rnd, the total samples are 1250 and
1500. The model is trained with 80% of the data and tested with
20%. As a result, 250 and 300 samples for testing results for both
traces can be clearly seen. Both figures clearly show the actual
(blue) and predicted (red) data. The training and validation loss
graphs for each feature of both traces are shown in Figs. 6 and
7 during epochs = 100. We can see from the loss plots that the
odel performs similarly on both training and validation data.

f these two loss plots begin to move consistently, the learning
hould be stopped. At epoch = 100, all subfigures in Figs. 6 and
have a consistent movement, indicating that the model has

earned very well. The model can be trained more efficiently by
ine-tuning hyperparameters.

Now we will talk about the results of the E-state estima-
ion. We propose four different clustering algorithms to cluster
imilar types of VMs based on their energy-consuming state,
.e. E-state, and compare the forecasting results obtained by the
roposed methods. We select one-month data from fastStorage
races, which includes 1250 VMs with various features such as
CPU , Rmemory, UCPU , UCPU , Dth

r , D
th
w , N th

r , N th
t . As discussed in Sec-

tion 2, we also define different energy-consuming states. We
use the univariate selection method on these features, along
with the χ2 test, to find the best four features to use on these
range labels, and to ensure that they are independent of other
features. During this test, the variables R , U , R and
CPU CPU memory
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Fig. 4. Forecasting results with GRU for different features of workloads in fastStorage traces.
Fig. 5. Forecasting results with GRU for different features of workloads in Rnd traces.
Umemory appear with the highest χ2 score of 3.234e+5, 3.644e+5,
1.374e+9, and 1.032e+8, respectively. We can see that provisioned
resources like RCPU and Rmemory also have an impact on the en-
ergy consumption of a host. As a result, the proposed clustering
algorithms use these selected features to find similar groups of
VMs based on these features, which have provided good preci-
sion and accuracy. As shown in Fig. 8, the proposed clustering
algorithms, TCLA, TKmeans, and TP-teda have achieved 12.48%,
50.88%, 51.20% and 66.48% accuracy on the selected dataset.
Furthermore, among all of them, TSSAP has the greatest clustering
accuracy of 66.48%. TSSAP is proposed by using the AP clustering
technique, which has an accuracy of 8.32%. As a result, TSSAP
outperforms AP by 87.48% and outperforms the average of other
proposed approaches by 53.80% since it incorporates two types
of learning, transfer learning and semi-supervised learning, into
its functionality. The accuracy of transfer learning improves as we
learn the optimal features that have the largest impact on energy
consumption. Furthermore, we use little side information such as
the number of classes to limit the AP technique to produce the
actual number of VM clusters rather than a random number of
329
VM clusters. The semi-supervised technique pairwise constraints
has also contributed to an increase in accuracy. The 66.48% ac-
curacy indicates that nearly 831 of the 1250 virtual machines
are correctly identified in energy-consuming states. Although,
because CPU and memory are the largest energy consumers in a
host [7], we chose only the best four features by performing a χ2

test. However, disk throughputs also contribute to a host’s energy
consumption; therefore, if more features are taken into account,
the precision of finding similar VMs can be increased. Instead of
using the χ2 test and the t-SNE, we can increase accuracy by using
several state-of-the-art clustering works and various types of ML
techniques to analyse the features. We are mostly interested in
putting our new idea for dealing with energy consumption into
practise, which is to find similar VMs based on features that affect
energy consumption primarily at the VM level.

9. Conclusions and future work

In this work, we studied workload and energy state estimation

in cloud data centres. Because of the high non-linearity of data
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Fig. 6. fastStorage: GRU-Model train vs. validation loss.
Fig. 7. Rnd: GRU-Model train vs Validation Loss.
centre workload, predicting workload in advance has become
difficult and existing ML-based workload prediction solutions,
primarily consider the utilization metrics CPU and memory ignor-
ing other important parameters. When a new VM is instantiated
on a host, along with actual usage level, provisioned resources
like CPU and memory are also responsible for energy consump-
tion. In addition, host’s energy consumption is also influenced by
disk and network throughput. Energy consumption visibility is a
crucial component of data centre energy management. The host
in modern data centres has several built-in sensors to monitor
energy consumption, but the virtualized platform does not. More-
over, measuring the energy consumption of VM resources such as
CPU, memory, and disk at the software level is difficult. However,
the current study proposes energy models that use VM resource
performance of CPU, memory, and disk to measure energy at the
VM level. To calculate memory energy consumption, however, we
must collect the last level cache (LLC) events raised by each VM
on each core, which is extremely difficult to obtain, making the
measurement even more difficult.
330
In this regard, we proposed a machine learning-based model
with a Prediction Module that deal with the above two tasks.
We explored different ML algorithms such as LR, RR, ARDR, EN,
and a deep learning method GRU. Based on best performing
model, its predictions helps RMS making efficient decisions. In
the second task, instead of measuring the energy consumption
of each VM, we came up with a novel idea of grouping similar
VMs into different groups based on features that affect energy
consumption. We chose clustering analysis as the method of
choice for this task because it is a powerful tool for analysing
data similarities. To that end, we proposed TSSAP, TCLA, TKmeans,
and TP-teda as four different clustering algorithms for identifying
similar groups of different energy-consuming states (E-state). Our
model’s main benefits include the following: (1) It is evaluated
using real workload traces that include both provisioned and uti-
lized resources, and all metrics performances such as provisioned
CPU, provisioned memory, CPU utilization, memory utilization,
disk throughput, and network throughput, (2) It is efficient and
adaptable because it can select the best results from a variety
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Fig. 8. Clustering accuracy comparison for E-state evaluated using micro-
recision.

f machine learning methods and (3) It makes use of semi-
upervised and transfer learning techniques to help group similar
Ms more accurately.
In future, we intend to implement the RMS component of our

odel for resource provisioning and VM consolidation based on
he best performing results of different ML methods proposed in
his work. We will also investigate more sophisticated models in
rder to improve workload prediction accuracy and performance
cross all metrics. Specifically, we will investigate different clus-
ering and learning methods, such as kernel learning instead of
airwise constraints.
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